字:
关灯 护眼
笔趣库 > > 第1章 实验的第二个步骤

第1章 实验的第二个步骤

?《基因的革命》

一二小说www.12xs.com,最有站,提供经典的文学名著、武侠小说、言情小说、人文社科类书籍在线阅读,所有TXT电子书手机免费下载阅读,我们提供给您的小说不求最多,但求最经典最完整

基因的革命导言

面对一个生物的世纪20世纪是物理学的世纪,对世纪是生初学的世纪,对这个判断,人们很快就会有初夏的感受,为了更好地面对这个生物世纪,就请从基因、从人类基因组计划开始吧……2000年6月26日,美国、英国和中国的国家领导人都宣布了历时近十年的人类基因组计划已经完成。世界各大媒体都以相当的篇幅报道了这一伟大的历史事件。将这项计划与20世纪着名的原子弹计划和阿波罗登月计划相提并论。

自从上个世纪孟德尔提出遗传规律,20世纪在基因遗传学方面有无数的科学家在攻克这一人类生命之谜。20世纪中期,沃森和克里克发现了dna双螺旋结构,人类从分子生物学的水平上逐步了解基因。对年代,以遗传工程为首的一系列生物技术的迅速发展,使人类更加了解生物技术在未来科学中的强大生产力。但是,在没有了解所有基因的位置和功能,只知道几千个基因在染色体上的位置,用这样的生物手段,仍然达不到完全了解生物体内部的巨大任务。即使后来的生物技术创造出如此神奇的后果,但是,人们还是要对整个基因组探察个究竟。

已知我们的生命、疾病都与这个小小的基因上承载的信息有关。那么,是零敲碎打,还是组织国际合作,一劳永逸地对人类基因组进行全部测序,就成为摆在科学家和政府前面的重要任务。

198年,美国科学家雷那多·杜伯克首先提出人类基因组计划,1990年,美国政府正式启动这一计划。后来,英国、法国、日本、德国,最后是中国,共同参与了这一伟大的计划。

为了宣传这一科学工程的意义,各国政府和科学家都做了大量的努力,使民众了解基因组测序工作对未来的巨大影响。有关基因革命和生物技术带来的许多社会和伦理问题也在西方社会的许多层面上广泛讨论。相比较而言,我国在这方面的宣传图为参与得比较晚和科学普及工作的薄弱,许多人是在新闻发布后才从各种提法不一的新问媒介中逐步开始了解人类基因组计划的。

在人类基因组计划的实施过程中,无数正直的科学家在和利欲熏心的私营公司的较量中,以崇高的精神维护了人类基因组计划的公正与开放,也以新的理念塑造了国际人类基因组计划(hgp)精神。

国际合作的人类基因组计划1997年形成的机类基因组宣约,经过联合国教科文组织的批准,成为历史上第一个有关科学研究的宣言。它充分反映了“人类基因组计划”可能对经济、伦理、法律及社会方面的诸多影响,因其迫切性和严肃性成为人类在21世纪这个生物世纪中的一部分准则。它确立了四项基本原则:人类的尊严与平等、科学家的研究自由、人类和谐、国际合作。

中国科学家在1998年参与了这项计划,他们不仅以自己的努力完成了这一里程碑式的工作中的1%,而且在这个过程中力争使中国的基因组科学与国际保持同步。他们还以焦虑的心情和顽强的努力,向中国人民介绍未来生物世纪的重要特点。

正是在他们这种焦虑和急迫的心情激励下,我们整合各方资料,编辑起这本书,其中有历史的回溯,有基因组计划实施过程中科学家的讲述。我们的目的是提供比前一时期新闻报道更深入一层的知识和情况,使读者也像我们一样迫切地感觉到生物世纪的紧迫问题。

切世纪是物理学的世纪,对世纪是生物学的世纪,对这个判断,人们很快就会有切身的感受,为了更好地面对这个生物世纪,就请从基因从人类基因组计划开始吧!

www.12xs.com

第一章寻找基因

人类最初是通过黄色和绿色的豌豆戴受到基因的存在的,这要归功于孟德纳在他的植物园中的实额;随后,摩尔根用长不过两毫米的黑瓜果蝇得出染色体是携带基因的最佳工员;终于沃森和克里克建立了双螺旋的基因(dna)模型……

孟德尔和他的黄色绿色的豌豆

孟德尔,1822年生于奥地利海赞多夫一个贫穷的农民家庭里。1843年他进布尔诺的修道院当了一名修土。他原本攻读科学学位,但是却没有完成学业,因为他和达尔文、盖尔顿一样,都饱受忧郁症之苦,无法一次就工作好几个月。虽然如此,他始终没有放弃手边的实验,最后终于发现,遗传信息是透过简单规则传递下去,而这个规则就是基因的文法。不过他到了晚年,却受到行政部门的压力,无法继续实验,成为现代科学的先例。于是,遗传研究搁置了将近半个世纪。

孟德尔提出一个观念上的突破,他不像生物学界的前辈,只专注于研究特质的遗传,如身高、体重,反而注重推理运算。他也是第一位认真算数学的生物学家,因此才有了伟大的发现。

豌豆和其他园艺植物一样,都有所谓的纯种品系(true-breedinsline),在这个品系里,每颗豌豆看起来都一模一样。至于不同品系,就会有不同特质,例如种子外形,有的是圆形的,有的却是皱折的;而种子颜色,可能是黄色或绿色。豌豆还有另一个优势,就是每一株豌豆都有雄性和雌性器官,只要用画笔轻轻一剧,就可以传授雄蕊花粉,让雌蕊受精。即使是同一株植物的雄蕊花粉,也一样可以用这种近似植物乱伦的过程,我们称之为自体受精。

孟德尔将黄豌豆的花粉(等于雄性的精细胞),加八绿豌豆花的雌蕊里,结果在下一代豌豆中,发现有趣的事情:下一代的豌豆,并没有如预期般地出现混合的颜色,反而只像父母其中一方,全部都是黄色豌豆。如果两个品系的“血液”真的混合在一起,那么第二代豌豆,应该是黄、绿色的综合色,结果显然没有。

实验的第二个步骤,就是让第一代黄豌豆(就是黄豌豆和绿豌豆交配后的下一代)自体受精,用同一株植物的花粉,让雌蕊的卵细胞受精。后来出现令人意想不到的结果:

两种原来的颜色,黄色与绿色,同时在下一代豌豆中出现。也就是说,不管导致绿豌豆出现的物质是什么,它的作用都持续发生,尽管中间隔了一代全部都是黄豌豆。这个结果,完全不符合父母的特质会混合在一起的理论,遗传的机制似乎是透过粒子,而不是流体。

孟德尔的实验还没有结束,他在每一代豌豆中,都加入一些黄豌豆和绿豌豆。结果发现,第一代豌豆,也就是两个纯种品系交配而成的下一代,全部都是黄色的;到了第二代,也就是第一代黄豌豆自体受精所产生的下一代,黄豌豆和绿豌豆的出现比例是三比一。于是,孟德尔从这个简单的实验结果中,演绎出遗传学的基本规则。

他认为,豌豆颜色是由一对因子(也就是后来知道的基因)控制,每株长大的豌豆都有两个控制颜色的因子,一个是来自花粉,另一个则来自卵细胞。在受精时,也就是当花粉碰到卵子时,另一株新植物诞生了,这个新植物体内也有这两个因子,其中豌豆颜色,就是由这两个基因决定。在原始纯种品系中,所有豌豆都带有两个“黄色”或是两个“绿色”基因。在纯种品系间交配后,每个子代,都会产生和他们父母完全相同的新家族。

一个纯种品系的花粉,和另一个不同纯种品系的卵子结合后,产生了体内含有不同因子的新植物,这两个因子分别来自父母。在孟德尔的实验中,虽然所有豌豆看起来都是黄色的,但是每株黄豌豆体内,都隐藏一组可以产生绿豌豆的隐性因子。换言之,黄色基因掩盖了绿色基因,于是我们称黄色基因为显性基因(ddrinantgene),绿色基因为隐性基因(recessivegene)。

同时拥有这两种基因的植物,会产生两种花粉或卵子。其中一半的花粉或卵子,带有产生绿豌豆的基因指令;另一半的花粉或卵子,则带有产生黄豌豆的基因指令。因此,当两种植物交配的时候,花粉和卵子就有四种不同的基因组合方式:四分之一的受精卵是黄色加黄色,四分之一是绿色加绿色,另外四分之二,也就是一半,是黄色加绿色。

孟德尔的实验已经证实,带有黄色基因加绿色基因的植物,长出来的豌豆是黄色的;而黄色加黄色,自然也是长出黄豌豆;只有两个基因都是绿色的植物,才能长出绿豌豆。

因此,第二代豌豆的颜色比例,就是三个黄豌豆比一个绿豌豆。孟德尔就是根据他发现的这个比例,发展出遗传的基本规则。

孟德尔还利用许多其他不同特质做交叉实验,如花朵颜色、植物高度、豌豆形状等等,结果发现,所有实验结果都符合这个三比一的比例。此外,他还拿一些不同特质的豌豆做配对实验,例如,用生长出黄色而表面平滑豌豆的植物,跟其他会长出绿色而表面有皱折的豌豆交配,结果还是符合他的法则。而且,豌豆颜色的遗传,完全不受形状的遗传影响。于是,他又据此演绎出另一项推论:每一种遗传特质都是受到单一基因的控制,而不是相同基因的不同变化,无论是相同特质的不同形式(如颜色的黄或绿),或者是完全不同的特质(如豌豆的颜色与形状),都是以分离的实质单位做为遗传基础。

孟德尔是第一位证明子女并非是由父母综合、平均而成的生物学家,同时他也是证明遗传基于歧异而非基于相似的第一人。

从孟德尔以降的生物学家,不断地讨论他的实验结果,并且反复辨证,偶尔还指控他欺诈,因为他的理论实在太契合实际情况。这些生物学家争论,到底孟德尔所谓的因子是什么东西,并且推测,为什么他的发现会长期被人忽略。姑且不论孟德尔理论长年隐讳的原因,他的作品倒是在二十世纪初,同时被好几位培育植物的专家重新挖掘出来,并且很快地发现,孟德尔定律符合几百项的动植物遗传特质。孟德尔能够一举纠正前辈学者多年的谬误,靠得当然是他的天分和好运。毕竟在科学史上,没有任何一门科学的起源,能够像遗传学这样直接追溯到个体,而孟德尔的作品,到现在还是这个庞大学科的基础。

孟德尔解决了达尔文在理论上的两难,虽然他们两个人都对此一无所知。无论是控制绿豌豆颜色的基因,或是控制白皮肤的基因,更不管是多稀有的基因,都不会因为出现许多其他基因的复制,而遭到稀释。相反地,这个基因在经过代代相传之后,仍然可以坚持不变,而且只要有机会占到优势,很可能就会蓬勃发展,成为常见的基因。

科学家重新发现孟德尔定律后不久,就!用这些定律来诠释人类遗传型式。当然,生物学家不可能在人类身上,进行繁殖实验,因为需要太久的时间;而是改为依赖过去尝试过的实验,来研究人类性事。他们利用家谱(ftillltree)或系谱(pedigrees),进行研究工作。有些系谱充满想像。十分奇特,竟然追溯到亚当做为他们的祖先。通常遗传学者可以运用的资料,只有少数几代而已。但是实际上,只要有一两代,就可以追溯到好几百年前。

人类的第一份系谱出版于1905年,这份系谱显示,挪威的一个小村庄的村民,都有短手掌和短手指的遗传特征,而且家族中有明显的遗传模式,没有任何一代是漏网之鱼。

换言之,如果任何人有短手指的遗传特征,他的父母、祖父母,乃至于曾祖父母,每一代直系血亲的长辈中,都至少有一个人拥有相同特征。如果这样的人跟一个没有这种遗传特征的人结婚,那么他们生下来的孩子,大约一半会有这种遗传特征,另外一半则是正常的。如果这些没有受到影响的孩子,又跟正常人结婚,他们的下一代就完全正常,这个遗传特征就会在这个家族的分支中消失。

这样的遗传模式,就是我们所说的显性基因遗传,只需要一个基因(就像黄色豌豆的例子),就可以显现其影响。大部分带有短手指特征的孩子,都是正常人与有这种遗传特征者联姻的结果,因此他们体内控制短手指特征的一对基因,分别来自父亲与母亲,一个是正常的,一个是不正常的。因此,他们本身的精子或卵子也有两种形式,一半是正常的,另外一半是不正常的,在他们结婚生子后,至少将有一半的孩子,带有造成短手指特征的基因。于是正常人与有短手指特征者结婚后,生下来的孩子也出现短手指的机率,就是二分之一。至于双方都正常的夫妻,就绝对不可能生出短手指的孩子,因为他们两人都没有这种会造成短手指特征的基因。

不过其他的遗传特征,却并非如此直截了当,因为受了隐性基因的影响。隐性基因的遗传,必须从父母亲双方,各遗传一个因子,才能显现其影响。通常父母亲中,只有一方带有一个隐性基因,从外表上看起来完全正常,也不知道他们会生出带有遗传特征的孩子。有时候,他们生下带有遗传特征的孩子,看起来更像是远房亲戚或是先祖,在孟德尔之前,生物学界对于这样的孩子感到相当困扰,不知道他们形成的原因,有时候称他们是“返祖的实例”(thorbacks),有时候又说这是由于“隔代遗传”(atavism)的缘故。不过现在我们都知道,他们只不过是遵循孟德尔定律,刚好从父母亲双方各遗传到一个隐性基因,而他们父母亲则各自只有一个隐性基因。

隐性基因遗传最典型的例子,就是白化症(albinism)。在英国,大约几千名儿童中,才会有一个白子。白子的眼睛、头发和皮肤没有任何色素。在英国之外的其他地区,白子的现象则更普遍。在北美印地安人中,白子出现的机率大约是0.67%。根据圣经“以诺书”(thebookofenoch,这是圣经中一个真伪可疑的章节)记载,诺亚本人也是白化症患者,若果真如此,诺亚的后裔倒没有显示出有这种基因遗传迹象。

几乎所有白子的父母亲,肤色都是正常的,他们身上的基因,一定有一个是隐性白子基因,再配上另一个显性而可提供完整色素的基因。白子的父亲的精子中,有一半带有隐性白子基因。如果带有这种隐性基因的精子,和一个带有隐性白子基因的卵子,结合受精,那么这个孩子身上就会有两个隐性基因,因此就成为白子。在这样的婚姻中,生下白子的机率大约是四分之一。但是每次怀孕都一样有四分之一的机率生下白子,并非如有些父母所想的,生了一个白子之后,就一定会连续生下三个正常孩子。

其实豌豆的遗传规则,也适用于人类遗传模式。只不过生物学的规则很少如此单纯简单,因此我们对于人类遗传学研究史上,不断发现打破孟德尔遗传定律的例外情况,早就司空见惯。

举例来说,基因未必一定是显性或隐性。像某些血型,两种基因都会表现出来,例如同时拥有a型和b型血液基因的人,他的血型就是ab型,两种血型的特征都包含在内。

如果更进一步研究到分子遗传,显性和隐性基因的概念,更是要一笔抹煞。我们现在可以轻而易举地指认出,在dna碱基的排序中,哪里发生了变化。因为两个基因都正常的人,跟一个dna链正常,而另一个dnam不正常的人,以及跟两个dna序列都发生变化的人,是截然不同的。分子生物学让我们可以直接观察基因的行为,而不必像孟德尔那样,凭袭着下一代的遗传情况,来猜测到底是怎么一回事。

另外一个让孟德尔大吃一惊的现代生物学研究成果,就是发现一个基因可能控制几种特质。例如,镰状细胞血红素的变异体,就有好几种副作用:带有两个这种变异体的人,可能会出现脑伤、心脏衰竭或骨骼畸型等症状。相反地,有些特质,如身高体重,则是由许多基因共同控制。此外,孟德尔提出的

<span id='iSYMJp'><font></font></span><samp id='ywFnsgD'><sub></sub></samp><listing id='LenRtht'><sup></sup></listing>
      <b></b><abbr id='Ktr'><base></base></abbr><sup id='gtjZGv'><ol></ol></sup><font id='cUW'><u></u></font><center id='wS'><bgsound></bgsound></center><bgsound id='Bf'><abbr></abbr></bgsound><thead id='Pds'><optgroup></optgroup></thead>